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ABSTRACT

Brief periods of rest after learning facilitate consolidation of new memories. Memory reactivation and
hippocampal-cortical dialogue have been proposed as candidate mechanisms supporting consolidation. How-
ever, the study of these mechanisms has mostly concerned sleep-based consolidation. Whether and how awake
reactivation can selectively consolidate cortical memory traces to guide subsequent behavior requires more
human electrophysiological evidence. This study addressed these issues by utilizing intracranial electroen-
cephalography (iEEG) recordings from 11 patients with drug-resistant epilepsy, who learned a set of object-
location associations. Using representational similarity analysis, we found that, among the multiple cortical
memory traces of object-location associations for the same object generated through several rounds of learning,
the association corresponding to memory traces with stronger cortical activation during wakeful rest was more
likely to be retrieved later. Awake reactivation of cortical memory trace was accompanied by increased hip-
pocampal ripple rates and enhanced theta-band hippocampal-cortical communication, with hippocampal in-
teractions with cortical regions within the default mode network preceding cortical reactivation. Together, these
results suggest that awake reactivation of cortical memory trace during post-learning rest supports memory
consolidation, predicting subsequent recall.

1. Introduction

occur offline (e.g., during sleep). Offline reactivation across hippo-
campal—cortical networks and hippocampal-cortical interaction are

Memory is a dynamic process that can be separated into two distinct
cognitive states: an online encoding/retrieval state and an offline
consolidation state (Nadel et al., 2012; Schreiner and Staudigl, 2020;
Wamsley, 2019). The offline memory consolidation state minimizes the
processing of new information, thereby reducing interference with
existing memory traces, stabilizing them, and potentially facilitating
their transformation and reorganization in the brain (Nadel et al., 2012;
Schreiner and Staudigl, 2020; Tambini and Davachi, 2019; Wamsley,
2019; Xue, 2022). Reactivation, the re-expression of neural activity
patterns (i.e., memory traces) encoding previous experiences commonly

posited as key candidate mechanisms in mediating memory consolida-
tion (Denis and Cairney, 2023; Favila et al., 2020; Klinzing et al., 2019;
Schreiner and Staudigl, 2020; Tambini and Davachi, 2019). Evidence
from sleep-related studies indicates that the strength of reactivation
correlates with subsequent memory performance (Dupret et al., 2010;
Van De Ven et al.,, 2016), whereas interruption of reactivation can
impair later memory performance (Gridchyn et al., 2020). Although
sleep has often been emphasized in extensive studies of memory
consolidation, evidence demonstrates that post-learning wakeful rest
can also facilitate the consolidation and prolonged retention of memory
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traces (Axmacher et al., 2009; Craig et al., 2015; Dewar et al., 2012). In
addition, reactivation has been observed during wakeful rest in both
rodents and humans (Carr et al., 2011; Chang et al., 2023; Deuker et al.,
2013; Diba and Buzsaki, 2007; Foster and Wilson, 2006; King et al.,
2022; Staresina et al., 2013; Tambini and D’Esposito, 2020). Further-
more, fMRI studies in humans have shown that the strength of reac-
tivation during wakeful rest is associated with subsequent memory
performance (Staresina et al., 2013). Together, these lines of evidence
suggest that memory consolidation is not restricted to sleep but can also
occur during wakeful rest.

Associative memories are typically learned across multiple repeti-
tions via retrieval practice. This leads to the question whether each of
these retrieval and re-learning rounds induces a separate, transformed
version of a memory trace whose fate can be tracked through its reac-
tivation during subsequent consolidation and retrieval stages. Indeed,
multiple trace theory suggests that several consecutive retrieval at-
tempts to induce multiple hippocampal traces of the same event (Nadel
et al., 2000; Nadel and Moscovitch, 1997). Memory traces are under-
pinned by engram cells, which are not confined to the hippocampus but
are distributed across multiple cortical regions(Tonegawa et al., 2018).
Moreover, the notion of a whole-brain engram complex, comprising
functionally connected engram ensembles across diverse brain regions,
has been proposed(Josselyn and Tonegawa, 2020). Selectively reac-
tivating cortical engram neurons during memory consolidation or
retrieval can increase subsequent memory strength and facilitate
memory retrieval, respectively(Guskjolen and Cembrowski, 2023).
Research on competing memories has shown that successfully retrieved
target memories exhibit higher item-specific reactivation during
retrieval, while reactivation of competing memories is suppressed
(Wimber et al., 2015). Moreover, weaker reactivation of target mem-
ories increased the likelihood of retrieving competing memories (Kuhl
et al.,, 2011, 2012). Research using the method of targeted memory
reactivation (TMR) can selectively manipulate reactivation during sleep
to study mechanisms of improved later memory performance (Lewis and
Bendor, 2019). This evidence offers insights into selective consolidation
during wakeful rest for competitive memory traces and inspired us to
speculate that selective reactivation of memory traces during wakeful
rest may predict subsequent memory retrieval.

It has been proposed that wakeful rest serves as an offline state and
shares neurobiological features of consolidation with sleep, influencing
memory through offline reactivation (Wamsley, 2019). An animal study
indicated that awake hippocampal replay (i.e., sequential reactivation)
was more inclined towards storing and updating memories, proposing
that the replay provides a common neural mechanism for preserving
experiences and promoting consolidation during both wakefulness and
sleep (Gillespie et al., 2021). Reactivation during sleep often co-occurs
with hippocampal ripples (Dupret et al., 2010; Ego-Stengel and Wil-
son, 2010; Ji and Wilson, 2007; Peyrache et al., 2009; Rothschild et al.,
2017; Zhang et al., 2018). Similar observations have been reported in
rodent studies during wakeful rest (Chang et al., 2023; Nguyen et al.,
2024; Sugden et al., 2020). However, a human intracranial EEG study
found that although reactivation was observed in both offline brain
states, reactivation and ripples co-occurred during sleep but not during
wakeful rest, and only ripple-triggered reactivation during sleep sup-
ports memory retention (Zhang et al., 2018). Additionally, memory
consolidation is inseparable from the hippocampal-cortical dialogue.
Evidence has shown that interfering with hippocampal-cortical inter-
action during sleep or wakeful rest reduces the efficiency of memory
consolidation (Novitskaya et al., 2016; Tambini et al., 2010; Xia et al.,
2017). These findings suggest that the neural mechanisms through
which reactivation, hippocampal ripple, and hippocampus-cortical
dialogue jointly support human memory consolidation during wakeful
rest require further investigation. Moreover, the temporal hierarchical
structure among these processes remains to be elucidated.

This study aims to explore how awake reactivation of cortical
representational patterns supports the selective consolidation of
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multiple cortical memory traces sharing the same experience. To
elucidate this question, we leveraged intracranial electroencephalog-
raphy (iEEG) recordings to precisely measure hippocampal and cortical
signals from patients with drug-resistant epilepsy who performed an
object-location association task followed by a period of wakeful rest
(Fig. 1A). The high spatialtemporal resolution of iEEG provides a unique
opportunity to elucidate the neural mechanisms underlying offline
memory consolidation supported by awake reactivation (Schreiner and
Staudigl, 2020), offering insights into the temporal hierarchical rela-
tionship  among  reactivation,  hippocampal ripple, and
hippocampal-cortical interaction. Representational similarity analysis
(RSA) was adopted as a metric of memory reactivation to examine the
functional role of awake reactivation of cortical memory trace (abbre-
viated as ‘awake cortical reactivation’) in selective consolidation and its
relation with memory benefits during subsequent retrieval.

2. Results

2.1. Retrieved spatial location biased towards the drop location during
learning

An object-location association task was performed by 11 epilepsy
patients, and iEEG data were recorded synchronously (Fig. 1A, Fig. 1D
and Table S1, see Methods for details). In short, the task required par-
ticipants to grasp the correspondence between objects and locations on
the screen. Participants were provided with 50 objects in total. In the
learning stage, participants needed to learn to place each object at its
target location on two consecutive times. Thus, several rounds of
learning generated multiple cortical memory traces in participants’
brain about the object locations (Locations in the learning stage, Los-
Learn). In the test stage (i.e., retrieval stage), participants were
required to place the object at its target location. To ensure that the
patients were engaged in the test stage, we calculated the patients’ drop
errors before and after learning, which were defined as the Euclidean
distance between the response location and target location. The results
showed that the patients’ drop errors were significantly reduced in the
test phase compared to the first round of the learning phase (t(10) = -
7.08, p < 0.001, Fig. 1F). It should be noted that the behavioral metric
was not concerned with the behavioral performance of object-location
memory, but with the relationship between the actual location (Loca-
tion in the test stage, Lo-Test) of one object and its multiple drop loca-
tions (Los-Learn) in the learning stage. Specifically, we speculated that
the participants’ Lo-Test would be biased toward one of the Los-Learn. In
other words, instead of randomly placing the object on the grid during
the retrieval stage, the participant may choose one from previous
response locations (i.e., Los-Learn) to drop. To verify this hypothesis, we
first calculated the distance between Lo-Test and each Lo-Learn for each
object and extracted the minimum one. The minimum distance between
Lo-Test and Los-Learn was averaged across objects and participants and
compared to a null distribution. The null distribution was obtained by
repeating the above procedure 1000 times, where the minimum dis-
tances were instead calculated between Lo-Test and an equal number of
randomly generated positions (Fig. 1B and Fig. 1C, see Methods for
details). The result showed that the minimum distance was smaller than
the 99.9th percentile of the distribution sorted in a descending order
(Fig. 1C). Moreover, we observed that the minimum distance between
Lo-Test and Los-Learn was significantly smaller than the distance be-
tween Lo-Test and the target location (t(10) = -6.90, p < 0.001, Fig. 1F).

A series of control analyses were conducted to validate the robust-
ness of our observations. We first repeated the analysis for each partic-
ipant to demonstrate the stability of this drop location-biased retrieval
effect at the individual level, and a consistent effect was observed in 10
of the 11 participants (Figure S1). In addition, the location of the last
learning round was closer to the target location in the spatial domain
and closer to the test stage in the time domain, which could lead to a
stronger cortical memory trace being more likely to be retrieved.
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Fig. 1. Experimental Protocol, Behavioral Results and Analysis Strategy. (A) Experimental Protocol. The object-location association task consisted of four stages:
preview, learning, rest and test. In the preview stage, 50 different objects accompanied by object-specific sounds were presented one by one at different locations. In
the learning stage, a object was presented in the center of the screen in each trial, and participants were required to place the object to its correct location. Then the
correct location was presented as the feedback. The test stage was identical with learning except for the absence of the feedback. (B) Schematic depiction of different
drop locations of the same object. The distance between target location and each drop location was used to group the drop locations into the nearest, the farthest and
other locations (3 other locations on average) in the learning stage. By randomly selecting equal number of locations from all the placement locations of this
participant, the shuffled locations were generated. (C) Minimum distance between learning and test stages, which was averaged across objects and participants. The
null distance distribution was generated by calculating the distance between random sampling locations and the drop location in the test stage. The red bar was the
average over participants and denoted the actual minimum distance between the nearest Lo-Learn in the learning stage and the location in the test stage. (D)
Depiction of electrode contact locations, with left panel for the hippocampus and both middle and right panel for the cortex. Electrode contacts from different
participants are denoted in different colors. One hippocampal contact was selected to identify ripples (marked by large spheres). (E) Schematic depiction of the
pipeline for the RSA between neural patterns of cortical memory traces in the learning stage and neural patterns in the whole rest stage. The time-resolved LRS profile
was obtained by repeating the calculation of spearman correlation between one neural vector in the learning stage and each of multiple neural vectors in the wakeful
rest stage. (F) Drop error (Euclidean distance in pixels) decreased significantly in the test phase compared to the first round of the learning phase (Second boxchart
versus First boxchart); The minimum (min) distance between Lo-Test and Los-Learn was significantly smaller than the distance between Lo-Test and the target
location (Third boxchart versus Second boxchart). (G) Reactivation strength of cortical memory traces during wakeful rest periods before and after learning. (H) No

significant differences in cortical reactivation during wakefulness among different time courses. *p < 0.05, ***p < 0.001. All error bars in this study indicate SEM.

<

Therefore, we repeated the analysis after excluding the last learning
round, and the effect was remained (Figure S2).

2.2. Awake cortical reactivation predicts subsequently retrieved location

Next, we aimed to investigate whether the cortical reactivation of
different memory traces sharing the same object could predict subse-
quent retrieval preference for these traces. The initial step was to esti-
mate the neural patterns specific to cortical memory traces, a critical
prerequisite for identifying their reactivation (Schreiner and Staudigl,
2020). The frequency-resolved RSA was implemented between cortical
memory traces of the same object-location associations during the
learning stage to generate a time-resolved cortical memory trace simi-
larity (learning-learning similarity) (Fig. 1E and Figure S3D). Since
different memory traces are associated with the same object, time points
exhibiting high similarity are more likely to reflect object-level shared or
overlapping representations rather than the distinct representations of
specific traces. Additionally, previous studies have demonstrated that
maintaining relatively distinct and low-similarity memory representa-
tions can mitigate interference between overlapping memories, thereby
enhancing subsequent learning and performance (Favila et al., 2016;
Hulbert and Norman, 2015). Hence, the time bin with the lowest cortical
memory trace similarity was used to obtain cortical memory
trace-specific pattern (i.e., 0.7 s before placement in the current study,
Fig. 1E and Figure S3D). To directly determine whether awake cortical
reactivation reflected task relevant information rather than inherent
properties of the memory system, we compared the cortical reactivation
strength of encoding-related cortical memory traces during wakeful rest
periods before and after learning. The results revealed that awake
reactivation strength after encoding was significantly higher than that
before encoding (After learning versus Before learning: t(10) = 4.79,
p < 0.001, Fig. 1G), indicating that awake cortical reactivation indeed
reflected the learning-induced cortical memory traces. Additionally,
repeated-measure ANOVA showed that there was no significant differ-
ence in cortical reactivation among different time courses of the wakeful
rest period after learning (F(s550) = 1.64, p = 0.17, Fig. 1H), indicating
that awake cortical reactivation did not prefer a specific time window.

Previous studies have shown that the successful memory retrieval
benefited from spontaneous offline reactivation, and demonstrate that
the degree of reactivation can predict subsequent memory performance
(Deuker et al., 2013; King et al., 2022; Schreiner et al., 2021; Staresina
et al., 2013; Van De Ven et al., 2016). We hypothesized that a similar
mechanism may exist in competitive cortical memory traces sharing a
common target, whereby the memory trace that was successfully
extracted during subsequent test experienced a higher cortical reac-
tivation during the wakeful rest period after learning, leading to a se-
lective consolidation of that cortical memory trace. A serial analysis
method was employed to test our hypothesis. First, we extracted cortical

memory trace with the highest reactivation for each object, along with
its corresponding encoding location. We reasoned that the distance be-
tween this encoding location and the retrieval location of the object
during subsequent test should be the shortest, and assessed the signifi-
cance level of the guess accuracy. The results showed that the accuracy
was significantly higher than 97 % of random guesses (Fig. 2A, per-
mutation test, see Methods for details). Next, we correlated the distance
between the Los-Learn and the Lo-Test with the reactivation strength of
the cortical memory trace of the Los-Learn during the wakeful rest stage.
This calculation was performed independently for each subject, and the
resultant correlation coefficient was averaged and compared with a null
distribution. The results showed that the reactivation strength was
significantly negatively correlated with the distance between the
Los-Learn and the Lo-Test (Fig. 2B, permutation test, see Methods for
details). Furthermore, we directly extracted the nearest Lo-Learn and the
farthest Lo-Learn from the Lo-Test, and compared the reactivation in-
tensity between the cortical memory traces of them. The results show
that the cortical memory trace of the nearest Lo-Learn showed a
significantly stronger reactivation intensity than the cortical memory
trace of the farthest Lo-Learn (t(10) =2.83, p = 0.018, Fig. 2C). A
control analysis was performed to further illustrate the relationship
between the competitive strength of the cortical memory trace which
was scaled by the distance between the nearest Lo-Learn (minimum
competitive strength) and the farthest Lo-Learn (maximum competitive
strength) and the difference in the intensity of reactivation of the two
cortical memory traces. The results indicated that the farther the dis-
tance between the two Los-Learn was (i.e., the larger competitive
strength), the greater the difference in awake cortical reactivation
strength of the two cortical memory traces (r=0.83, p < 0.001,
Fig. 2D).

When directly comparing the time-resolved reactivation intensity of
the nearest Lo-Learn with that of the farthest Lo-Learn during test
(learning-test similarity), a reasonable result was observed that the
cortical memory trace of the nearest Lo-Learn displayed a higher reac-
tivation level and thus won the competition (cluster-based permutation
test, see Methods for details, Figure S3C). These results suggest that the
target cortical memory trace was reactivated more strongly during the
retrieval stage while the competing cortical memory trace was relatively
weaker, and thus the reactivation strength of cortical memory trace
during retrieval would predict subsequent behavior.

Finally, we assessed the validity of the time bin used to obtain
cortical memory trace-specific pattern. Accordingly, we calculated the
similarity between the pattern of the nearest Lo-Learn cortical memory
trace at a single time point during the learning stage and the pattern
during the rest period and averaged the values to obtain the Learning-
rest similarity (LRS) at that time point. This calculation was repeated
for each time period of 1 s before placement to obtain a time-resolved
LRS signal of the nearest (and farthest) Lo-Learn cortical memory
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Fig. 2. Awake cortical reactivation predicts subsequent retrieval location. (A) The correct number of guesses based on LRS. It was assumed that the location in the
learning stage, whose cortical memory trace had the highest similarity with the neural pattern in the whole rest stage, could be the closest to the drop location in the
test stage. According to this assumption, the correct number of the above guesses for all objects from all participants was calculated and marked in a red vertical bar.
The null distribution of correct number of guesses was generated by shuffling the label of cortical memory trace in learning stage and recalculating the correct
number. (B) Significant correlation between the LRS strength and the normalized distance to the retrieval location in the test stage. The null distribution of cor-
relation coefficient was generated by shuffling the correspondence between the distance and LRS strength of cortical memory trace and recalculating the correlation
coefficient. Inset: an example subject. (C) The differences of LRS strength of the cortical memory traces (nearest location versus farthest location). (D) The correlation
between the differences of LRS strength of the cortical memory traces (nearest location versus farthest location) and the distance between the locations (nearest

location versus farthest location). * p < 0.05.

trace during the learning stage. A comparison of the time-resolved LRS
of the nearest and the farthest Lo-Learn cortical memory trace showed a
significant difference, with significant temporal clustering distributed
around 0.7 s before placement (cluster-based permutation test, see
Methods for details, Figure S3E), which was consistant with the time bin
(i.e., 0.7 s before placement) used for the cortical memory trace-specific
representation. This result demonstrated that multiple cortical memory
traces may retain separate and unique representations during the
learning stage. Additionally, we employed an alternative approach to
validate the selection of the time bin by examining the relationship
between LLS (Figure S3D) and LRS (Figure S3E) at the time-bin level.
Specifically, for each time bin preceding object placement during the
learning phase (time window: —1000 ms to —100 ms, in 20 ms intervals,
yielding in 46 time points), we computed the representational similarity
between cortical activity patterns of different memory traces associated
with the same object (Figure S3F, X-axis, LLS). We then assessed the
awake reactivation strength of these cortical activity patterns separately
for near and far memory traces and calculated the differential reac-
tivation strength (Near - Far) between them (Figure S3F, Y-axis, LRS).
Our analysis revealed a significant negative correlation between pattern
similarity during the learning stage and the differential reactivation
strength during the rest stage (r = -0.66, p < 0.001). This finding sug-
gests that selecting time points with lower representational similarity
during learning for subsequent reactivation analysis more effectively
captures the competitive dynamics between memory traces, with near
memory traces exhibiting a greater advantage in reactivation during
wakeful rest.

2.3. Electrophysiological signatures of awake cortical reactivation

Evidence from human electrophysiological recording suggests that
hippocampal ripples play a critical role in reactivation and sleep offline
memory consolidation (Norman et al., 2019; Zhang et al., 2018).
Therefore, we further analyzed the contribution of hippocampal ripples
to awake cortical reactivation. To evaluate this, the cortical LRS peaks
were identified for each cortical memory trace using 2.5 standard de-
viations as thresholds (Fig. 3A, top pannel). Based on this criterion, we
calculated the rate of cortical reactivation peaks during the wakeful rest
period before and after learning for each patient. The results showed
that the awake cortical reactivation peak rate increased in all patients
after learning (¢(10) = -8.77, p < 0.001, Fig. 3A, bottom pannel). After
ripple detection, a significantly higher hippocampal ripple rate
time-locked to the cortical LRS peaks was observed (Fig. 3C and Fig. 3D,
cluster-based permutation test, see Methods for details). Furthermore,
we examined the consistency of this effect across participants, and
observed that 8 out of 11 participants showed ripple-reactivation
co-occurance (Figure S5). We also noted that some studies employed
different ripple detection methods (Kunz et al., 2024; Schreiner et al.,
2024; Staresina et al., 2015). To verify that the results were not driven
by variations in detection criterions or the specific hippocampal con-
tacts, we incorporated all hippocampal electrodes, applied a different
ripple detection criterion (filtering in 80-120 Hz and at least 3 cycles)
and recalculated the ripple rate around the reactivation peak. The effect
remained (Figure S4D).

The next aim was to assess whether cortical memory trace-specific
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awake reactivation was accompanied by hippocampal-cortical interac-
tion, which was traditionally observed during sleep-related consolida-
tion (Schreiner and Staudigl, 2020). The hippocampal-cortical
interaction was then directly examined with phase-locking values (PLV)
and weighted phase lag index (wPLI) as metrics of communication be-
tween hippocampus and cortex. Theta oscillations can orchestrate the
synchronous activities across remote neuron assembles and play a crit-
ical role in both inter-regional communication and episodic memory
(Herweg et al, 2020). We inferred that theta-band (4-8 Hz)
hippocampal-cortical interaction may be increased around the cortical
LRS peaks. Consistently, significant theta-band hippocampal-cortical
PLV clusters were obtained when aligned to the cortical LRS peaks
(Figure S4C, cluster-based permutation test, see Methods for details). A
control analysis was performed to detect hippocampal and cortical theta
oscillations, and the results showed that cortical reactivation was
accompanied by an increase in theta activity in the hippocampal-cortical
network (Figure S4A and B). To validate the robustness of inter-regional
communication finding, we also calculated the weighted phase lag index
(wPLI) and still observed a significant theta-band hippocampal-cortical
WwPLI cluster around the reactivation peak (Fig. 3B). Additionally, the
individual-level analysis suggested that 7 out of 11 exhibited strong

connectivity-reactivation coupling (wPLI, Figure S7; 7 out of 11 for PLV,
Figure S6). Together, our result revealed that cortical reactivation was
associated with increased hippocampal ripple rate and enhanced
hippocampal-cortical interaction during wakeful rest.

2.4. Temporal dynamics of reactivation, hippocampal ripple, and
hippocampal-cortical interaction

The interplay between reactivation, hippocampal ripple, and
hippocampal-cortical interaction is a crucial yet challenging question,
particularly in understanding their temporal hierarchy. To address this,
we first examined the temporal relationship between hippocampal rip-
ple and cortical reactivation by identifying the peak time points of
cortical reactivation and quantifying the time intervals between ripple
occurrences and these peaks. Our results showed no significant temporal
precedence between hippocampal ripple and cortical reactivation (t
(10) = 0.91, p = 0.385, Fig. 4A). An additional analysis detecting the
proportion of trials in which ripple event occurred before the cortical
reactivation peak yielded consistent results (t(10) = 0.39, p = 0.703,
Fig. 4B).

Similarly, we analyzed the temporal dynamic between cortical-
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Fig. 4. Temporal dynamics of reactivation, hippocampal ripple, and hippocampal-cortical interaction. (A) Time lag of ripple relative to awake cortical reactivation
peak. (B) Trial proportion of ripple preceding awake cortical reactivation peak. (C) Time lag of hippocampal-cortical connectivity peak relative to awake cortical
reactivation peak. (D) Trial proportion of hippocampal-cortical connectivity peak preceding awake cortical reactivation peak. * p < 0.05.

hippocampal connectivity peaks and cortical reactivation peaks, again
finding no significant lead-lag effect (t(10) =-1.44, p = 0.181, p_fdr
= 0.271, Fig. 4C, first bar). However, given that different cortical re-
gions may contribute differently to cortical-hippocampal connectivity,
especially considering prior work highlighting the role of the default
mode network (DMN) in ripple/reactivation related memory processing
(Higgins et al., 2021; Huang et al., 2024; Kaefer et al., 2022; Kaplan
et al., 2016; Norman et al., 2021; Nour et al., 2023), we specifically
extracted electrode contacts within the DMN and re-examined their
connectivity with the hippocampus. Interestingly, we found that the
peak connectivity between the DMN and hippocampus significantly
preceded cortical reactivation (t(10) = -2.89, p = 0.016, p_fdr = 0.048,
Fig. 4C, second bar), whereas this effect was absent for non-DMN elec-
trode contacts (t(10) = 0.15, p = 0.887, p_fdr = 0.887, Fig. 4C, third
bar). To further validate this effect, we conducted an alternative analysis
by quantifying the proportion of trials in which connectivity peak
occurred before reactivation peak. The results remained consistent (t
(10) =2.27, p=0.046, p_fdr =0.069, first bar; t(10)=2.97,
p = 0.014, p_fdr = 0.042, second bar; t(10) = 0.37, p = 0.719, p_fdr
= 0.719, third bar; Fig. 4D), demonstrating a significant temporal pre-
cedence of DMN-hippocampal connectivity over cortical reactivation,
which was not observed in other brain network (Figure S8A-B).
Furthermore, 7 out of 11 participants exhibited a consistenst effect,

indicating inter-participant robustness (Figure S8C). Overall, our results
suggest that there is no significant temporal relationship between awake
cortical reactivation and hippocampal ripple, but hippocampal-DMN
connectivity consistently precedes cortical reactivation during wakeful
rest.

3. Discussion

This study utilized iEEG recordings to reveal memory reactivation
during wakeful rest based on multiple cortical memory traces derived
from several learning trials prior to the rest period. These reactivation
measures were associated with subsequent retrieval and also used to
identify electrophysiological signatures of offline memory consolida-
tion. Specifically, the extent to which memory traces showed enhanced
cortical reactivation during wakeful rest predicted location of later
retrieval. Furthermore, an increase in hippocampal ripple rate and
hippocampal-cortical interaction was observed at the peak of awake
cortical reactivation, with hippocampal-DMN interaction preceding the
peak of awake cortical reactivation.
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3.1. Different roles of online and offline awake reactivation in memory
process

Awake reactivation, occurring both online and offline, influences
memory differently across brain states. Electrophysiological studies in
rats revealed that interrupting hippocampal ripples during learning
disrupted hippocampal replay and impaired learning performance
(Jadhav et al., 2012). The coordinated hippocampal-prefrontal reac-
tivation was observed during learning, emphasing the role of awake
cortical reactivation in memory processes (Jadhav et al., 2016). More-
over, awake reactivation during learning is stronger and more structured
compared to sleep, playing a critical role in initial spatial learning (Tang
et al., 2017). Overall, awake reactivation could support memory-guided
behavior by providing a high-fidelity representation of behavioral
experiences.

Single-neuron recordings in humans have shown selective reac-
tivation of specific neurons in various regions before free recall, sug-
gesting that reactivation underlies spontaneous recollection
(Gelbard-Sagiv et al., 2008; Khuvis et al., 2021). Additionally,
ripple-coupled reactivation in higher-order visual areas linked ripple
activity to the recall process (Norman et al., 2019). Further evidence
supports that successful retrieval is associated with enhanced cortical
reactivation, increased ripple coupling between cortex and medial
temporal lobe (MTL), and ripple-related replay of cortical spiking se-
quences (Vaz et al., 2019, 2020). Consistent with these findings, we
observed increased hippocampal ripple rate aournd cortical reac-
tivation, and showed that cortical memory traces closest to the retrieval
location were more strongly reactivated. Collectively, these studies
indicate that ripple-related reactivation may serve as a candidate
mechanism supporting successful memory retrieval.

Although both wakeful rest and sleep states can support memory
consolidation, it remains unclear whether the two offline states perform
distinct functions in consolidation. A well-designed study demonstrated
that while cued memory reactivation during both wakefulness and sleep
prevented the forgetting of low-value associations, reactivation during
the waking state primarily enhanced the specific target association,
whereas reactivation during sleep benefited the entire set of low-value
associations (Oudiette et al., 2013). This finding suggests that consoli-
dation during waking state strengthens specific, salient memories,
whereas sleep consolidates and integrates all related memories. It is
important to note that participants in that study were watching a movie
during the wakeful period, rather than engaging in “pure” wakeful rest,
which may influence the interpretation of these findings. A recent re-
view elaborates a similar perspective, arguing that wakefulness reliably
enhances memory traces and supports online task-related behavior,
while sleep fosters the formation of integrative and schematic repre-
sentations and facilitates memory generalization (Tambini and Davachi,
2019). Consistent with prior research (Deuker et al., 2013; King et al.,
2022; Staresina et al., 2013; Tambini and D’Esposito, 2020), our results
indicate that reactivation during wakeful rest can predict subsequent
performance. Specifically, cortical memory traces with higher reac-
tivation intensity are more likely to be successfully retrieved. While our
study provides evidence for the role of awake reactivation in memory
consolidation, it does not allow for a direct comparison of the fidelity of
reactivation between the wakeful resting state and sleep. Future studies
should address this gap to further elucidate these mechanisms.

3.2. Electrophysiological mechanism of cortical reactivation supporting
memory consolidation during wakeful rest

Memory consolidation in offline brain states strengthens previously
encoded experiences by reducing external attention and fostering an
internally focused state (Tambini and Davachi, 2019; Wamsley, 2019).
Repeated offline reactivation of neural patterns that occurred during
experiences constitutes an attractive mechanism for memory consoli-
dation, and is observed both during sleep and wakeful rest (Schreiner
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and Staudigl, 2020; Tambini and Davachi, 2019; Wamsley, 2019). Our
results confirmed that cortical neural patterns associated with multiple
cortical memory traces during learning were selectively reactivated
during wakeful rest, with the extent of reactivation predicting the
retrieval probability of those cortical memory traces. These findings
provide direct electrophysiological evidence that awake cortical reac-
tivation supports consolidation, consistent with the framework that
reactivation is a general mechanism for memory updating, storage, and
consolidation (Gillespie et al., 2021). This raises the question of whether
wakeful rest and sleep share common neurophysiological mechanisms of
reactivation favoring memory consolidation.

Evidence from human studies demonstrated that hippocampal-
cortical interaction also occur during wakeful rest and can lead to
memory benefits (Tambini et al., 2010; Tambini and D’Esposito, 2020).
Consistent with this observation, enhanced theta-based hippo-
campal-cortical connectivity reported in our data support an active
hippocampal-cortical dialogue during wakeful rest. Additionally, ripples
detected during wakeful rest were associated with BOLD signals in
various brain regions, further supporting hippocampal-cortical in-
teractions (Logothetis et al., 2012). In line with numerous studies (Carr
et al., 2011; Diba and Buzsdki, 2007; Foster and Wilson, 2006; Nour
et al., 2021; Zhang et al., 2018), our data also revealed the presence of
hippocampal ripples during wakeful state. Substantial evidence,
including our own data, indicate that hippocampal ripple-coupled
cortical reactivation, similar to that observed during sleep state, also
occurs during wakeful state (Chang et al., 2023; Nguyen et al., 2024;
Sugden et al., 2020).

Overall, our findings support the hypothesis that reactivation plays a
consistent role in preserving experiences during wakeful rest, as in sleep,
suggesting that memory consolidation is characterized by hippocampal
ripple-coupled reactivation and hippocampal-cortical dialogue in both
brain states (Gillespie et al., 2021; Tambini and Davachi, 2019; Tang and
Jadhav, 2019). However, the neural implementation of the
hippocampal-cortical dialogue differs in the two different brain states.
The active systems consolidation framework emphasizes the
hippocampal-neocortical dialogue during sleep which is mediated by a
triple coupling of slow oscillations (SO), spindles, and ripples (Brodt
et al., 2023; Denis and Cairney, 2023; Klinzing et al., 2019; Schreiner
and Staudigl, 2020; Staresina, 2024; Watson and Buzsaki, 2015). It has
been proposed that reactivation during sleep may favor global network
connectivity through this triple coupling, whereas awake reactivation is
more local due to the absence of sleep-specific SO and spindles, with this
shift from local to global reactivation potentially explaining the differ-
ences in consolidation properties between the two offline brain states
(Genzel and Robertson, 2015). Furthermore, data from human
resting-state scalp EEG indicated that memory improvements were
associated with increased SO activity, indicating that SO activity during
wakeful rest may facilitate hippocampal-cortical communication and
promote memory consolidation (Brokaw et al., 2016). Further studies
are needed to elucidate the neural oscillatory signatures of awake
reactivation that underlie hippocampal-cortical dialogue related to
memory consolidation.

3.3. Temporal hierarchy of reactivation, hippocampal ripple and
hippocampal-cortical connectivity

Investigating the temporal dynamics of cortical reactivation, hip-
pocampal ripple, and hippocampal-cortical interaction can deepen our
understanding of the candidate mechanisms by which awake reac-
tivation supports memory consolidation. Electrophysiological data
during sleep in rodents support the view that ripple-related reactivation
originates in the hippocampus and subsequently spreads to the cortex (Ji
and Wilson, 2007; Klinzing et al., 2019; Peyrache et al., 2009). In
addition, similar temporal relation has been found in iEEG recordings
during memory retrieval in humans (Vaz et al., 2019, 2020). However,
our data suggest that cortical reactivation and hippocampal ripple
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co-occur during wakeful rest, with no clear temporal hierarchy between
them. Therefore, future studies with more extensive human electro-
physiological recordings are needed to investigate whether the temporal
relationship that hippocampal ripple precede cortical reactivation re-
mains stable during sleep, wakeful rest, and active retrieval.

The brain regions comprising the DMN increase their activity during
quiet rest, or offline states (Menon, 2023; Raichle, 2015). Many studies
have reported ripple/reactivation-related enhanced activity in the DMN
(Higgins et al., 2021; Kaplan et al., 2016; Norman et al., 2021; Nour
et al., 2023), supporting the view that these two spontaneous brain
dynamics—offline reactivation and intrinsic DMN activity—work
together to support memory consolidation (Kaefer et al., 2022). In
addition, recent study has shown that increased reactivation probability
enhances the connectivity between the hippocampus and the DMN
(Huang et al., 2024). Inspired by these findings, our focus on the tem-
poral structure between cortical reactivation and hippocampal-cortical
interaction revealed an interesting result: only hippocampal-DMN con-
nectivity consistently preceded cortical reactivation. Our results support
a synergistic role for these two intrinsic brain dynamics, suggesting that
they may work together to support memory consolidation during
wakeful rest. Furthermore, we believe the observed temporal structure
between reactivation and hippocampal-cortical interaction aligns well
with the "call-up" framework, which posits that during the transfer of
information, reader can establish inter-regional connectivity through
low-frequency synchronization, followed by high-frequency oscillations
from the sender region transmitting specific information. For instance,
cortical SOs and spindles precede hippocampal ripple activity to facili-
tate memory transfer during sleep-dependent memory consolidation
(Buzsdaki, 2010, 2019). Our results suggest that a comparable process
may occur during wakeful rest, where the DMN first establishes con-
nectivity with the hippocampus via theta-band coupling, followed by
hippocampal ripple and cortical reactivation.

4. Conclusion

In conclusion, our study demonstrates that awake reactivation of
multiple cortical memory traces derived from learning experiences can
bias subsequent memory retrieval, potentially determining what will be
remembered later. Furthermore, our data suggest that awake cortical
reactivation is associated with enhanced hippocampal-cortical
communication and an increase in hippocampal ripple rate, with
hippocampal-DMN interaction preceding awake cortical reactivation.
These findings provide empirical evidence for the role of awake cortical
reactivation in memory consolidation and shed light on the underlying
electrophysiological mechanisms.

5. Methods and materials
5.1. Participants

Eleven patients (2 females and 9 males; mean age + standard devi-
ation (SD): 23.9 £ 5.4 years) with medically refractory temporal lobe
epilepsy were recruited in the current study at Beijing Sanbo brain
hospital. They underwent stereotactic implantation of depth electrodes
to pinpoint epileptogenic zones. Demographic information for each
patient is detailed in Supplementary Table 1. All participants reported
normal or corrected-to-normal visual acuity and normal color vision.
Informed consent was obtained from all participants, and the study
protocols were approved by the Ethics Committee of Beijing Sanbo Brain
Hospital.

5.2. Experimental protocol
Participants learned to associate each of 50 unique objects (small

squares, 2.3 cm per side) with one specific location on a grid displayed
on a 13.6 cm (600 pixels) square monitor. Concurrently, each object was
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paired with a distinctive sound (e.g., goblet with a breaking sound). This
object-location association task has been used in previous target mem-
ory reactivation studies (Berkers et al., 2018; Rudoy et al., 2009; Van
Dongen et al., 2012). The original object-location association task con-
sisted of six stages: preview, learning, rest, test, sleep, and post-sleep
test. Since the sleep stages and post-sleep testing stages were not
related to this study, the data from the two stages were not used here and
the procedures for the sleep phase and post-sleep testing phase are not
described here. During the preview stage, subjects familiarized them-
selves with the experimental instructions and the unique locations of
each object. In the learning stage, participants placed each object at its
correct location, with trials being self-paced and terminated by a button
press confirming object placement. Correct placements were displayed
for 3000 ms as feedback. Participants repeated learning rounds with
objects in random order until all were placed within 3.4 cm (150 pixels)
of their correct location for two consecutive rounds. Objects correctly
placed in two consecutive rounds were omitted from subsequent rounds.
Each object has an average of 5 rounds of learning. After completing the
learning, the subjects rested for about 30-40 minutes. During the rest
period, the subjects were asked not to do things that consume cognitive
resources (such as reading books, playing games, etc.) and not to sleep.
Afterwards, the test stage assessed the memory performance of all 50
objects without feedback. The average time spent by participants was
29.9 + 9.4 minutes in the learning stage, and 5.9 + 0.6 minutes in the
test stage.

5.3. Minimum distance between locations in learning and test stage

We wanted to investigate whether the location of the object placed
during the test was associated with previous cortical reactivation. We
thus hypothesed that the recalled position during the test would be close
to one of the placed positions during the learning stage for the same
object. To test it, we calculated the Euclidean distance between the
recalled position during the test stage and the locations placed during
the learning stage for each object. Since each object had multiple trials
during learning, we took the minimum distance as the closest one for
this object. Afterwards, we randomly selected several positions from all
the placement locations of this participant as surrogate learning posi-
tions (the same number as the actual learning round) and recalculated
the closest distance between the real testing positions and these surro-
gate positions. We repeated the above steps 5000 times and generated a
distribution to test our hypothesis.

5.4. Electrophysiological recordings

The surgical implantation of electrodes was conducted based solely
on clinical requirements. Intracerebral multiple-contact electrodes
(8-16 contacts; dimensions: length 2 mm, diameter 0.8 mm, spacing
1.5 mm; Huake-Hengsheng Medical Technology Co. Ltd., Beijing,
China) were implanted using a robot-assisted stereotactic surgery sys-
tem. Intracranial EEG recordings were acquired using a Nicolet system
(128 channels, sampling rate: 512 Hz; Thermo Nicolet Corporation).

5.5. Electrode reconstruction and localizations

To accurately determine the anatomical placement of the electrodes,
post-implantation CT images were co-registered with pre-operative T1-
weighted MR images using FreeSurfer (v6.0.0, http://surfer.nmr.mgh.
harvard.edu/). The localization of the implanted electrodes was ach-
ieved using established software (Qin et al., 2017), and the accuracy of
electrode contact localization was visually verified. Subsequently, all
electrode coordinates were normalized onto the Montreal Neurological
Institute (MNI) standard space.The precise locations of the electrode
contacts in the hippocampus were anatomically identified for each pa-
tient using FreeSurfer’s parcellation algorithm (Desikan et al., 2006) and
confirmed through visual inspection.
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5.6. Preprocessing and data analysis

Data analysis was performed in MATLAB (MathWorks Inc., Natick,
MA) using EEGLAB (Delorme and Makeig, 2004), Fieldtrip (Oostenveld
et al., 2011), analysis scripts published in previous studies (Janca et al.,
2015; Norman et al., 2019) as well as custom-developed scripts in this
study. Following methods similar to a previous study (Zhang et al.,
2018), we re-referenced all intracranial EEG (iEEG) data, excluding
hippocampal contacts, by computing the average activity across all
contacts. This approach aimed to enhance the specificity of represen-
tational patterns at individual contacts. For each hippocampal contact,
we subtracted a reference signal from a nearby white-matter contact to
mitigate common noise, as described by Norman et al. (2019).
Power-line interference noises (50 Hz and its harmonics) were removed
using a notch filter (implemented as a Hamming windowed FIR filter,
applied via EEGLAB’s pop_eegfiltnew function). Detection of epilepti-
form spikes in each hippocampal contact was performed using the
ISARG (Intracranial Signal Analysis Research Group) method with
default settings (Janca et al., 2015), available at http://isarg.fel.cvut.cz
(version 16). The number of IEDs detected for each subject is provided in
Table S1. Additionally, the mean peri-IED field potential and spectro-
gram are shown in Figure S4E-F. To prevent artifact-ripple detections,
ripples occurring within 100 ms of each epileptiform spike were
excluded from analysis.

5.7. Time-frequency analysis

Spectral decomposition of LFP data (learning and rest stage) for all
cortical and hippocampal contacts was done using Morlet wavelets
(seven cycles, frequency bin: 2 Hz, step bin: 20 ms) implemented in
Fieldtrip. Then we normalized the iEEG power using Z-score across all
time bins at each frequency bin.

5.8. Representational similarity analysis

RSA was performed by correlating the spectral power across fre-
quencies (2-140 Hz, with 2-Hz steps from 2 to 10 Hz and a 10-Hz step
from 20 to 140 Hz) and across all cortical channels, separately for each
time bin, using Spearman’s correlation (Liu et al., 2021).

Learning-rest similarity (LRS): first, we calculated the cortical neural
activity similarity of the same object across multiple trials during the
learning period (A time window of —1000 ms to placement was used to
maximize the number of included trials. Figure S3A showed that all
trials in the learning stage had a reaction time greater than 1 second),
and the resulting similarity was averaged across objects and partici-
pants. Considering the competition across multiple cortical memory
traces and the need for different cortical memory traces to be stored
separately, the time bin with the lowest cortical memory trace-cortical
memory trace similarity was used to obtain cortical memory trace-
specific pattern. Therefore, we correlated the cortical memory trace-
specific pattern with the activity pattern across the entire wakeful rest
period (30 minutes). For each cortical memory trace, this analysis
yielded the time series of learning-rest similarity.

Learning-test similarity (LTS): As each object had multiple trials
during the learning period, and only one during the testing period, we
correlated the pattern of each learning trial with the pattern of testing
trial for same object (separately for each time bin, from —1000 ms to the
placement, Figure S3B showed that 98.4 % of the trials in the test stage
had a reaction time greater than 1 second).

5.9. Offline cortical reactivation detection

Previous studies have found that cortical reactivation is accompa-
nied by hippocampal ripples and interaction between hippocampus and
cortex during both sleep and wakeful rest (see reviews: (Brodt et al.,
2023; Denis and Cairney, 2023; Klinzing et al., 2019; Schreiner and
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Staudigl, 2020; Staresina, 2024; Tambini and Davachi, 2019; Tang and
Jadhav, 2019; Watson and Buzsaki, 2015)). In this study, we further
tested the relation between cortical reactivation and hippocampal rip-
ples during wakeful rest. Therefore, we needed to find time periods of
pronounced cortical reactivation. First, we smoothed the time series of
LRS (with a 200 ms sliding window) for each cortical memory trace.
Reactivation events were identified from the smoothed signal when they
exceeded 2.5 standard deviations (SD) above the average value. The
reactivation peak was the maximum within each event. Adjacent events
with less than 2000 ms separation (peak-to-peak) were deleted. In total,
90.5 % of the cortical memory traces contained one or more reactivation
events, with an occurrence rate 0.42 + 0.16 per minute. We also used
the same threshold to calculate the occurrence rate of reactivation
during the pre-learning resting state as a baseline, which was 0.0016
+ 0.0042 per minute.

5.10. Behavioral prediction

We wanted to investigate whether the reactivation during rest is
related to behavioral performance during subsequent testing, that is,
whether the cortical memory trace with the highest reactivation in-
tensity during rest is closest to the recalled position during test. Among
multiple cortical memory traces of each object (i.e., the objects with at
least three trials, 73 % of the total objects), we took the average LRS
across time to obtain the resting reactivation score for each cortical
memory trace and then inferred that the cortical memory trace with the
highest resting reactivation score would be closest to the recalled posi-
tion in the subsequent test. If correct, we marked this object as 1,
otherwise 0. In the control conditions, we shuffled the resting reac-
tivation scores within each object and repeated the above analysis
10,000 times to generate a null distribution.

On the other hand, we calculated the correlation between the resting
reactivation score and the distance between the recall position. Among
multiple cortical memory traces of each object, we normalized the
resting reactivation score and the placement distance (Euclidean dis-
tance between the position during learning and the position during
testing), respectively. Then we calculated the correlation between
resting reactivation score (Z-scored) and distance (Z-scored) for each
participant. Afterwards, we shuffled the labels and repeated the above
steps 10,000 times to generate a null distribution of control condition.

5.11. Offline hippocampal ripple detection

For each participant, the hippocampal contact located in the hip-
pocampus was utilized for ripple detection. We employed established
ripple detection scripts (Norman et al., 2019) to identify ripple events
during rest stages.

The re-referenced local field potentials (LFPs) recorded in the hip-
pocampal contact were filtered within the frequency range of 70-180 Hz
using a Hamming windowed sinc finite impulse response (FIR) filter. We
calculated the analytic amplitude of the LFPs using a Hilbert transform,
followed by clipping extreme values (using Least-Median-Squares and
clipped to 4 SD above the mean value). The clipped signal was then
squared and smoothed using a FIR low-pass filter with a 40 Hz cutoff
frequency. Ripple events were identified from the original signal
(squared but unclipped) when they exceeded 4 standard deviations (SD)
above the clipped signal. Event duration was extended until the ripple
power fell below 2 SD. Events shorter than 20 ms or longer than 200 ms
were excluded from further analysis. Adjacent ripples with less than
30 ms separation (peak-to-peak) were merged. To avoid including po-
tential pathological events, any ripple events occurring within 100 ms of
inter-ictal epileptic discharges (IEDs) were removed from analysis.

5.12. Connectivity analysis

To evaluate the connectivity between the hippocampus and cortex
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during rest, we calculated the phase-locking value (PLV) and the
weighted phase lag index (wPLI). PLV quantifies the consistency of
phase differences between a pair of electrodes and is expressed as:

1 N
PLV(f) = & ‘anle o

Where N denotes total time points and @y, indicates the phase dif-
ference between the two time courses x and y.

The wPLI quantifies the consistency of phase differences weighted
according to their distance from the real aixs and is expressed as:

N30 [Im (S ) ISgn(Im(Sxym))

WPLI =
N [Im (S )|

Where N denotes total time points and Im(S,y,) indicates the imaginary
part of the cross_spectral density at time point. Sgn indicates the sign
(+1/-1 for positive/negative values, and O for zero values).

In this study, we performed band-pass filtering on the preprocessed
data using eegfilt. m from EEGLAB (4-8 Hz). The complex signal at each
contact was extracted using a Hilbert transform. Then we calculated the
PLV/WPLI of each hippocampal-cortical contact pair using a sliding
window (window size: 1000 ms, step size: 20 ms). Finally, the PLV/
wPLI values were averaged across contact pairs to yield a time series,
which was then Z-scored over time to indicate the connectivity strength
between the hippocampus and cortex.

5.13. Temporal hierarchy analysis

We calculated the occurrence times of hippocampal ripples within a
1-second window centered around the peak of each reactivation event
and recorded their time intervals relative to the reactivation peak. These
intervals were then averaged across trials for each subject to obtain the
mean time delay per subject. A t-test was performed at the subject level
to determine whether the mean time delay significantly deviated from
zero. Additionally, we computed the proportion of trials in which the
time delay was negative (i.e., ripples preceded the reactivation peak) for
each subject and compared this proportion to 50 % using t-test.

Using a similar approach, we identified the peak times of cortical-
hippocampal connectivity (measured by wPLI, to mitigate volume
conduction effects) within a 1-second window around each reactivation
peak. Only connectivity peaks exceeding two standard deviations above
the mean were considered. We then assessed the significance of the time
delays relative to zero and the proportion of trials with negative delays
compared to 50 %.

5.14. Statistical analysis

For cluster-based permutation tests of comparisons between condi-
tions, we first performed paired t-tests and then identified clusters based
on a threshold (p < 0.05) and summed the t-values within the clusters.
We then shuffled condition labels, repeated the above operation 1000
times, and extracted the largest cluster in each permutation. Finally, we
determined the significance of an original cluster’s t-value according to
its order among the 1000 permutations.

For cluster-based tests of single conditions (ripple rate, PLV/wPLI
and theta power during cortical reactivation peak), we compared it with
the null distribution formed by a shuffling procedure. We randomly
chose some time points (same number as the actual situation) as sur-
rogate reactivation peaks during the rest period, and then calculated
those metrics (ripple rate, PLV/WPLI and theta power) for each partic-
ipant using these surrogate reactivation peaks. After repeating the above
operation 1000 times, we obtained a null distribution that allowed us to
determine which time points in the original data were significant
(p < 0.01). Afterwards, we identified consecutive significant time pe-
riods as clusters and summed the metrics within the cluster to get the
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original cluster size. With the same approach, we also found clusters in
every shuffled data and extracted the largest cluster. Finally, we deter-
mined the significance of an original cluster according to its order
among the distribution of shuffled clusters.
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